
 
 

Application Note 

 

 

Series & Parallel Impedance Parameters and Equivalent Circuits 
 
At any specific frequency an impedance may be represented by either a series or a parallel 
combination of an ideal resistive element and an ideal reactive element which is either capacitive 
or inductive (as illustrated in Figure 1).  Such a representation is called an equivalent circuit.   
The values of these elements or parameters depend on which representation is used, series or 
parallel, except when the impedance is purely resistive or purely reactive.  In such cases only one 
element is necessary and the series or parallel values are the same.  The relationships between 
the values of these parameters are given in Table 1 where the subscript s indicates a series value 
and the subscript p indicates a parallel one.  These formulas make use of two quantities: the 
dissipation factor, D, which is the ratio of the resistance of an impedance to its reactance, and the 
quality factor, Q, which is the reciprocal of D.   It should be emphasized that these series and 
parallel equivalent circuits both have the same value of complex impedance at a single 
frequency, but at any other frequency their impedances will be different.  (Example in Figure 2) 

 

Figure 1: Equivalent Circuits & Phase Relationships 
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Complex Impedance and Admittance 
 
For DC, the resistance, R, of a linear device is defined by Ohm's Law as the ratio of the voltage 
applied across the device to the resulting current through it.  
 

R
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  Ohm's Law    (1) 
        
Resistance, R, can be specified by a single real number and the unit is the Ohm (Ω).  The 
conductance, G, of a device is the reciprocal of its resistance: G = 1/R.  The unit of conductance 
is the Siemen (formerly mho, ‘Ohm’ spelled backwards).   
 
For AC, the ratio of voltage to current is a complex number because AC voltages and currents 
have phase as well as magnitude.   This complex number is called impedance, Z, and is the sum 

of a real number, R, and an imaginary one, jX, (where j = −1).  Thus, Z = R + jX.  The real 
part is the AC resistance and the imaginary part is the reactance.  Both have units of Ohms (Ω). 
 
Reactances come in two types, inductive and capacitive.  The reactance of an inductive element 
is ωL, where L is its inductance and ω = 2πf (where f = frequency).  The reactance of a 
capacitive element is negative, -1/ωC, where C is its capacitance.  The negative sign occurs 
because the impedance of a pure capacitor is 1/jωC and 1/j = -j. 
 
Because the impedance of two devices in series is the sum of their separate impedances, we can 
think of an impedance as being the series combination of an ideal resistor and an ideal capacitor 
or inductor.  This is the series equivalent circuit of an impedance comprising an equivalent series 
resistance and an equivalent series capacitance or inductance (see Figure 1).  Using the subscript 
s for series, we have: 
 
Z = RS + jXS = RS + jωL or RS - j/ωC          (2) 
 
For a complicated network having many components, it is obvious that the element values of the 
equivalent circuit will change as the frequency is changed.  This is also true of the values of both 
the elements of the equivalent circuit of a single, actual component, although the changes may be 
very small. 
 
Admittance, Y, is the reciprocal of impedance, 
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It too is complex, having a real part, the AC conductance G, and an imaginary part, the 
susceptance B.  Because the admittances of parallel elements are additive, Y can be represented 
by a parallel combination of an ideal conductance and a susceptance, where the latter is either an 
ideal capacitance or an ideal inductance (see Figure 1).   



 

More Complex Numbers 
 
Using the subscript p for parallel elements, we have: 
 
Y = GP + jBP = GP + jωCP or GP - j/ωL        (4) 
 
Note that an inductance susceptance is negative and also note the similarity or duality of this last 
equation and Equation 2. 
 
It is important to recognize that, in general, Gp is not equal to 1/Rs and Bp is not equal to 1/Xs 
(or -1/Xs) as one can see from the following calculation.  
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Thus GP = 1/RS only if XS = 0, which is the case only if the impedance is a pure resistance, and 
BP = -1/XS (note the minus sign) only if RS = 0, that is, the impedance is a pure capacitance or 
inductance. 
 
GP, CP and LP are the equivalent parallel parameters.  Because a pure resistance is the reciprocal 
of a pure conductance and has the same symbol, we can use RP instead of GP for the resistor 
symbols in Figure 1, noting that RP = 1/GP and RP is the equivalent parallel resistance.   (By 
analogy, the reciprocal of the series resistance, RS, is series conductance, GS, but this quantity is 
rarely used). 
 
Two other quantities, D and Q, are useful, not only to simplify the conversion formulas of Figure 
1, but also by themselves, as measures of the "purity" of a component, that is, how close it is to 
being ideal or containing only resistance or reactance.  D, the dissipation factor, is the ratio of the 
real part of impedance, or admittance, to the imaginary part, and Q, the quality factor, is the 
reciprocal of this ratio. 
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A low D value, or high Q, means that a capacitor or inductor is quite pure, while a low Q, or high 
D, means that a resistor is nearly pure.  (In Europe, instead of D they use the tangent of the angle 
delta, tan δ.  See Figure 1 and Equation 14). 
 
Some conventions are necessary as to the signs of D or Q.  For capacitors and inductors, D and Q 
are considered to be positive as long as the real part of Z or Y is positive, as it will be for passive 
components.  (Note, however, that transfer impedance of passive networks can exhibit negative 
real parts).  For resistors, a common convention is to consider Q to be positive if the component 
is inductive (having a positive reactance), and to be negative if it is capacitive (having a negative 
reactance). 
 



 

Complex Equations: You Do The Math! 
 
Formulas for D and Q in terms of the series and parallel parameters are given in Table 1.  D or Q 
are independent of the configuration of the equivalent circuit used to represent the impedance. 
 

Table 1: Impedance Equations 
Parameter Quantity Unit  Symbol Formula 
Z Impedance ohm,  Ω 
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Xs Reactance,  
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Y Admittance siemen, S 
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Cs Series capacitance farad, F 
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Ls  Series inductance henry, H 
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LP Parallel inductance henry, H 
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θ Phase angle of Z degree or radian θθθθ φφφφ= −  

φ Phase angle of Y 
 

degree or radian φφφφ θθθθ= −  

 

Notes:  f = frequency in Hertz,   j = −1 ,    ω = 2πf 

 R and X are equivalent series quantities unless otherwise defined. G and B are equivalent parallel quantities unless otherwise defined. 
 We sometimes use parallel R (Rp) but rarely use parallel X, and very rarely series G or series B. 

  C and L each have two values, series and parallel. If not defined usually we mean the series values, but not necessarily, especially for C (Cp is common, Lp is less used). 
 We define Q as being positive if it is inductive, negative if it is capacitive, We define D as positive if capacitive. Thus D = -1/Q. 
 Some people (particularly in Europe) use tan δ instead of D, tan δ = D. 



 

Polar Form: Magnitude and Phase 
 
A complex number may be expressed in polar form as well as in the Cartesian form used so far.  
For impedance and admittance the relationships are 
 

Z RS jXS Ze= = =  j   θ
 and Y GP jBP Y e= + =  j φ

 (7) 
 
where Z  and Y  are the magnitudes and that θ (theta) and φ (phi) are the phase angles in 
radians. The magnitude of a complex number is the square root of the sum of the squares of the 
two parts so that 
 

Z Rs Xs2 2= +  and  Y Gp Bp2 2= +          (8) 
 
Note that Z  = 1/ Y .  This can be checked using the calculation of Equation 5. 
 
The phase angle of an impedance or an admittance is the angle whose tangent is the ratio of the 
imaginary part to the real part so that 
 
θ = arctan (X/R) = arctan Q, or tan θ = Q   (9) 
 
and φ = arctan (G/B) = arctan Q, or tan φ =Q  (10)  
 
The size of the phase angle of an admittance is the same as that of the corresponding impedance. 
Yet if we use the convention that a positive angle is one in the counterclockwise direction then 
the angle of an admittance is the negative of that of the corresponding impedance, as one can see 
from the equation: 
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Euler's formula, 
 

e cos x j sin x,jx = +                 (12) 
 
is useful when dealing with imaginary exponents and can be used to show that 
 
Rs Z cos ,and that= θ  Xs Z sin = θ     (13) 
 
These phase relationships can be understood better using the diagrams of Figure 1 which show 
both inductive and capacitive impedance phasors (or planar vectors) on both the Z and Y planes.  
Here the angle is measured from the positive real axis (+R or + G) and the angle δ (delta) is 
defined as the compliment of θ or φ so one can see that: 
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Frequently Asked Questions 
 
1.  Which should be measured series or parallel parameters? 
 
It depends on the purpose of the measurement.   For incoming inspection and production 
measurements on passive components usually the series values is specified in EIA and MIL 
standards.  These standards also specify test frequencies and other test conditions and should be 
consulted. 
 
If one is trying to determine the DC value of a resistor using AC measurements it is best to make 
series measurements of low-valued resistors (say under 1kΩ) and to make parallel measurements 
of high-valued ones.  In most cases this almost completely avoids errors due to series inductance 
and parallel lumped capacitance.  Also, a low frequency should be used.  Note that sometimes an 
AC measurement can give the correct DC value better than a DC measurement because thermal 
voltage and drift errors are avoided and measurement sensitivity is apt to be higher. 
 
Other cases where parallel measurements are preferred are when measuring very low values of 
capacitance, when making measurements on dielectric and magnetic materials, and, of course, 
when trying to determine the separate values of two components in parallel.   Very often the D of 
a capacitor is less than .01 so that it doesn't make any difference which is measured because the 
difference between the series and parallel values is less than .01%.  Likewise, the Q of a resistor 
is usually less than .01 so that either resistance quantity can be measured. 
 
2.  Which equivalent circuit more closely models the behavior of a component? 
 
Generally a series equivalent circuit is a better model of a low-impedance circuit and a parallel 
equivalent circuit better models a high-impedance one.  However, all physical components are, 
in effect, complicated networks containing resistance, capacitance and inductance.  The best 
model should be the one whose parameter values change least as the frequency is changed in the 
range being used. 
 
3.  What is the ESR of a capacitor? 
 
ESR stands for equivalent series resistance, the same quantity that we call Rs in the above 
discussion.  ESR is a measure of the loss in a capacitor and is related to D by: 
 
ESR = Rs = D/ωCs (see Table 1) 
 
One should note that ESR is not equal to the resistance that is actually in series with a capacitor, 
such as the resistance of the connections or in the foil or plate structure.  It is a measure of the 
total loss in a capacitor which includes dielectric loss and loss in leakage resistance as well as 
loss in this actual series resistance.  When the frequency is high or the capacitance is high, or 
both, the ESR often will approximate the actual series resistance because this resistance becomes 
the largest cause of loss under these conditions.  However, ESR is always larger than this actual 
series resistance. 



 

More FAQ’s 
 
4.  What is Power Factor? 
 
Power factor, PF, is defined as the cosine of the angle θ: 
 

PF cos 
R

Z

D

1 D2
= = =

+
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PF is used to calculate the power in a circuit using: 
 
Power I Rs I Z cos 2 2= = =θ  IEcos IE(PF)θ =  
 
where I and E are rms (root-mean-square) values. 
 
5.  What is Percent D? 
 
D is sometimes expressed as a percent instead of as a decimal fraction and this has led to some 
confusion.  As with any other number, to get percent one multiplies the number by 100 and adds 
the % sign.  For example, a D of .01 is a D of 1%. 
 
There is a problem in using D in % when one tries to express measurement accuracy.  For 
example, if the measured value of D is express as 1% and the tolerance is given as .1%, what is 
the possible range of D values?  Is it .01 +/- .001 (which is 1% +/- .1%) or is it .01 +/- .00001 
(which is 1% +/- .1% of 1%)?  A percent tolerance of a quantity in percent can be ambiguous. 
 
6.  What is the ESL of a capacitor? 
 
ESL, or equivalent series inductance, is a term that, unfortunately, is sometimes used to indicate 
the actual inductance in series with a capacitor (inductance in the leads, foils or plates).  It would 
be preferable to simply refer to this as the inductance of a capacitor. 
 
To be precise, equivalent series inductance is Ls in the above discussion and is the reactance 
divided by ω (see Equation 2).  The reactance of a capacitor below resonance is negative Ls.  
Above resonance Ls is positive.  If a capacitor can be modeled as a pure inductance, L, in series 
with a pure capacitance, C, then: 
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At a high enough frequency Ls will be nearly equal to L. 



 

Example 
 
Figure 2 illustrates the series and parallel equivalent circuits that have the identical impedance 
equal to 1000Ω at the specific frequency equal to 10/2π kHz (1.5915kHz).  If the frequency 
changes then the value of ZDUT will change. 

 
Figure 2: Impedance of Series & Parallel Circuits at a given Frequency 

 
Summary 
 
No matter how it is expressed, in polar or Cartesian coordinates, as an impedance or an 
admittance, two quantities are required to specify an impedance (or admittance) value 
completely at any given frequency: Rs and Xs, Gp and Bp, Z  and θ or Y  and φ.  Therefore to 
make a circuit diagram that represents an impedance at a given frequency one needs to use two 
circuit elements.  These can be connected in two ways, series or parallel.  The values of these 
circuit elements depend on which connection is used, and all these values change if the 
frequency is changed. 
 
For complete product specifications on the 7000 Series Precision LCR meters or any of 
QuadTech’s products, visit us at http://www.quadtech.com/products. Call us at 1-800-253-1230 
or email your questions to info@quadtech.com. 
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